Kaatsu - a review: Blood flow restriction research still work-in-progress
(Pope. 2013) -- Pope, Wilardson and Schoenfield have recently published an ahead-of-print paper that offers a very comprehensive overview of the current scientific perspective on training with cuffs (aka Kaatsu training). As the authors point out, the most intriguing aspect of blood flow restricted training (BFR) is that it is totally juxtaposed with the "traditional [strength training] paradigm, which suggests that lifting only higher intensity loads increases" muscle strength and size.Figure 1: Concurrent lactate & GH increases support the metabolic accumulation hypothesis, one of the most popular explanations for the effects of BFR (Inagaki. 2011). |
As Pope et al. rightly point out, these results do yet conflict with previous findings by Reeves et al. who observed similar increases in GH in trainees who wore a cuff while they were doing biceps curls at 30% of the 1-RM, despite identical lactate levels in the cuffed an not-cuffed condition (Reeves. 2006). Accordingly, alternative or rather synergistic effects such as an increase in reactive hyperemia (excess of blood) have been brought forward to explain the growth response to BFR.
I am not going to reiterate the whole review here, but still want to point out a couple of other interesting points, the Pope, Willardson and Schoenfield make. There would be, for example the increase in type II (fast, glycolytic) muscle fiber recruitment that was observed in some, yet not all studies, an increase phosphorylation of the protein synthesis gauge S6K1 (likewise a type II fiber dominant effect) and the accumulating evidence that BFR may "enhance recruitment of higher threshold motor units". In the end, the latter means that you will see similar activation patterns as you would expect them in "classic" heavy duty resistance training with comparably light loads and a cuff.
Will BFR soon become a common training technique?
"Chicken legs no more!" In a previous study even walking on a treadmill provided a growth stimulus, when the legs were cuffed before the participants hopped on the torture machine (learn more). |
Once we have gained a better understanding of the processes that take place during and after BFR resistance training, researchers will probably also be able to provide more concrete advice how training with reduced blood flow can be successfully incorporated into the resistance training regimen of trainees on both ends of the performance continuum that ranges from the cancer cachetic patient to the elite level athlete.
Until then and in the absence of someone who's actually knowing what he/she to "cuff me up", I for my part will stick to traditional high intensity weight and interval training and would suggest that you do the same ;-)
"Deadlift, bench and squat, but God forbid: Never hold your breath!" - True or false?
(Hacket. 2012) -- I guess you will have heard about the fallacy of holding your breath while you bench squat and deadlift. It's one of those things every "I got 2h of instructions, now I am a trainer"-expert will tell his clients: "Don't hold your breath... breath!" On the other hand you will hear some of the "big dudes" tell you that you simply cannot lift weights as heavy as they do, if you don't resort to the Valsalva maneuver (VM) which is actually pretty much what most of us are doing, when we are "holding our breath", when lifting. If you carefully observe yourself, when you try to deadlift 80%+ of your 1-RM max you will realize that you do in fact hold your breath, but not like an apnoe diver would do it, on the contrary actually it's like breathing out yet with having your airways closed up.So why are we doing bullsh*t like that 100% unvoluntarily? Well, the opponents of "holding your breath" will tell you that the pressure that's building up in your abdomen will stabilize your spine and protect you from injury. Against that background it seems only logical that we are naturally programmed to perform such a maneuver whenever we have to lift a heavy object from the ground or free ourselves from a tree that's lying right across our chest by benching it away ;-)
Even when you are training for strength, heavy weights are not everything. A study I covered back in 2011 here at the SuppVersity showed - allegedly to my own surprise - that reducing rest times from week to week is another way to make progress and gain more mass and strength - particularly in the legs (read more) |
How effective this type of all-natural spine protection actually is, has yet never been fully elucidated. The same goes for the performance increases which are, as the scientists point out, "likely", but not adequately quantified in well-controlled studies. That there is a non-negligibly increased risk involved, especially for people with pre-existing cerebrovascular disease, cardiovascular disease and hernias, on the other hand, is non-debatable.
Against that background and in view of the fact that the hemodynamic response (=increase in blood pressure, etc.) decreases over years of training, the authors conclude that the deliberate use of the Valsalva maneuver for brief time-periods (<3s) should remain a prerogative of the more experienced trainees.
Electrical muscle stimulation (EMS) as a recover tool
SuppVersity veterans know: Recovery begins before you even hit the gym. "Pre-covery" would in fact be an appropriate term for the scientifically proven benefits of taking a hot bath 2 days before a particular strenuous workout or competition. Sounds hilarious? Well, if that's what you think, you better go back and read up on the results of the 2012 study by Touchberry et al., then. |
Kibisa et al. had recruited a group of 19 long-distance runners who had then been randomize to two groups who performed either their regular post-training routine or were attached to the said EMS device in order to apply what you may call a "post-workout recovery stimulus". Interestingly this treatment lead to significant increases in a subsequent maximal voluntary contraction (MVC) and work capacity (WC) tests, as well as profound decreases in in the 72h post muscle soreness.
As you probably would have guessed, the scientists ascribe these benefits to an "improved blood flow in the stimulated muscles and an increased venous blood pump". This however is nothing you could not achieve by an extended cool down, as well so that the study at hand won't qualify as an excuse to go and buy an EMS belt for your abs from the shopping channel ;-)
HIIT after infarction reduces scarring of heart tissue
In the unfortunate case you missed the Making HIIT a HIT! Series I highly suggest .you go back and learn about the fundamental and not so fundamental rules of how to HIIT it right. Part I comprises a brief research overview to give you an idea of what you can expect from HIIT workouts. Part II provides some theoretical considerations and a comprehensive list of 10 rules of thumbs to follow, in order to make HIIT a HIT ;-) |
The man who had sustained an idiopathic acute myocardial infarction had been diagnosed with 16% myocardial scar tissue early after the event saw successive improvement in the physiology of his hard, with an MRI-confirmed decrease in myocardial scar tissue. As the scientists point out, he is thus living proof for the "high efficacy and low risk" of high intensity aerobic interval training as a means not just to prevent future cardiac complications, but even to reverse existing damage.
Resistance training works *fullstop* - Regardless of age
(Mero. 2013) -- In the March issue of the European Journal of Applied Physiology Mero et al. report that their 21-week progressive resistance training regimen (two full-body workouts per week classic progression from 15 reps at 40-60% to 5-8 reps at 70-80%) yielded significant strength and size gains in old and young previously untrained subjects.Figure 2: Changes in muscle cross sectional area and strength at the end of the 21-week study period (Mero. 203) |
Remember the article on the usefulness of HMB for the older trainees? With its anti-catabolic effect it would leave more of the scarce satellite cells for growth. Plus: It appears to have anti-obesity effects as well (read more) |
That two training sessions per week did yield statistically significant increases in muscle size and strength and that despite suboptimal energy and protein intake in the older individuals (<1g/kg body weight protein per day for many of the older subjects vs. 1.5g/kg of protein in the young guys; overall significantly lower energy intake than the young guys) is still impressive and goes to show you that it's never to late for you to start lifting weight.
It's never too late! I could hardly imagine a better bottom line to this short potpourri of recent studies and it's unfortunate that for way too many of our fellow men, even an eye-opener like a heart attack is not enough to divert from the well-worn path of a sedentary life... ok, that was more than enough finger wagging for today. After all, the fact that you've found your way to the SuppVersity is evidence tells me that your path probably ain't going to end in the emergency room.
Well, unless you are a post-menopausal woman taking who's determined to take high dose folate supplements for the next 6+ years. In that case, you may well end up in the ER when the tumor in your colon you've been cultivating over the past 72 months bursts. You have now idea, what I am talking about? In that case you probably haven't yet subscribed to the SuppVersity Facebook Channel yet. Certainly a mistake, but as you've learned today, it's never too late and once you've read the respective post, you can still mae up for this lapse ;-)
References:
- Abe T, Loenneke JP, Fahs CA, Rossow LM, Thiebaud RS, Bemben MG. Exercise intensity and muscle hypertrophy in blood flow-restricted limbs and non-restricted muscles: a brief review. Clin Physiol Funct Imaging. 2012 Jul;32(4):247-52.
- Fujita S, Abe T, Drummond MJ, Cadenas JG, Dreyer HC, Sato Y, Volpi E, Rasmussen BB. Blood flow restriction during low-intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis. J Appl Physiol. 2007 Sep;103(3):903-10. Epub 2007 Jun 14.
- Godfrey R, Theologou T, Dellegrottaglie S, Binukrishnan S, Wright J, Whyte G, Ellison G. The effect of high-intensity aerobic interval training on postinfarction left ventricular remodelling. BMJ Case Rep. 2013 Feb 13;2013.
- Hackett DA, Chow CM. The Valsalva maneuver: Its effect on IAP and safety issues during resistance exercise. J Strength Cond Res. 2012 Dec 4.
- Inagaki Y, Madarame H, Neya M, Ishii N. Increase in serum growth hormone induced by electrical stimulation of muscle combined with blood flow restriction. Eur J Appl Physiol. 2011 Nov;111(11):2715-21.
- Kibiša R, Grūnovas A, Poderys J, Grūnovienė D. Restoration of the work capacity of the skeletal muscle with electrical myostimulation. J Strength Cond Res. 2013 Feb;27(2):449-57.
- Mero AA, Hulmi JJ, Salmijärvi H, Katajavuori M, Haverinen M, Holviala J, Ridanpää T, Häkkinen K, Kovanen V, Ahtiainen JP, Selänne H. Resistance training induced increase in muscle fiber size in young and older men. Eur J Appl Physiol. 2013 Mar;113(3):641-50.
- Pope ZK, Willardson JM, Schoenfeld BJ. A Brief Review: Exercise And Blood Flow Restriction. J Strength Cond Res. 2013 Jan 28.
- Reeves GV, Kraemer RR, Hollander DB, Clavier J, Thomas C, Francois M, Castracane VD. Comparison of hormone responses following light resistance exercise with partial vascular occlusion and moderately difficult resistance exercise without occlusion. J Appl Physiol. 2006 Dec;101(6):1616-22.
0 comments:
Post a Comment